NEW YORK – One of the biggest mysteries in cosmology is the rate at which the universe is expanding. Scientists can predict this using the standard model of cosmology, also known as Lambda-cold dark matter. This model is based on detailed observations of the light left over from the Big Bang, the so-called cosmic microwave background.

The universe’s expansion makes galaxies move away from each other. The further away they are from us, the more quickly they move. The relationship between a galaxy’s speed and distance is governed by Hubble’s constant, which is about 43 miles (70 km) per second per megaparsec (a unit of length in astronomy). This means that a galaxy gains about 50,000 miles per hour for every million light-years it is away from us.

But unfortunately for the standard model, there’s a dispute over the value, leading to what scientists call the Hubble tension. When we measure the expansion rate using nearby galaxies and supernovas, it is 10% larger than when we predict it based on the cosmic microwave background.

Do we live in a giant void?

In our new paper, we present one possible explanation: that we live in a giant void in space (an area with below average density). We show that this could inflate local measurements through outflows of matter from the void. Outflows would arise when denser regions surrounding a void pull it apart. They’d exert a bigger gravitational pull than the lower density matter inside the giant void.

In this scenario, we would need to be near the center of a void about a billion light-years in radius and with density about 20% below the average for the universe as a whole. So, not completely empty.

Such a large and deep void is unexpected in the standard model … and therefore controversial. The cosmic microwave background gives a snapshot of structure in the infant universe, suggesting that matter today should be rather uniformly spread out. However, directly counting the number of galaxies in different regions does indeed suggest we are in a local void.

Tweaking the laws of gravity

We wanted to test this idea further by matching many different cosmological observations by assuming that we live in a large void that grew from a small density fluctuation at early times.

To do this, our model didn’t incorporate Lambda-cold dark matter. Instead, it incorporated an alternative theory called Modified Newtonian Dynamics (MOND).

Theorists originally proposed MOND to explain anomalies in the rotation speeds of galaxies. These anomalies are what led to the suggestion of an invisible substance called dark matter. MOND instead suggests that the anomalies can be explained by Newton’s law of gravity breaking down when the gravitational pull is very weak, as is the case in the outer regions of galaxies.

The overall cosmic expansion history in MOND would be similar to the standard model. However, structure (such as galaxy clusters) would grow faster in MOND. Our model captures what the local universe might look like in a MOND universe. And we found it would allow local measurements of the expansion rate today to fluctuate depending on our location.

Bulk flow

Recent galaxy observations have allowed a crucial new test of our model based on the velocity it predicts at different locations. Scientists can do this by measuring something called the bulk flow. The bulk flow is the average velocity of matter in a given sphere, dense or not. This varies with the radius of the sphere, with recent observations showing it continues out to a billion light years.

Interestingly, the bulk flow of galaxies on this scale has quadruple the speed expected in the standard model. It also seems to increase with the size of the region considered, opposite to what the standard model predicts. The likelihood of this being consistent with the standard model is below one in a million.

This prompted us to see what our study predicted for the bulk flow. We found it yields a quite good match to the observations. That requires that we are fairly close to the void center, and the void being most empty at its center.

Read rest of story at Earth Sky