DETROIT – Last year, the Canadian tritium fueled an experiment at JET showing fusion research is approaching an important threshold: producing more energy than goes into the reactions. By getting to one-third of this breakeven point, JET offered reassurance that ITER, a similar reactor twice the size of JET under construction in France, will bust past breakeven when it begins deuterium and tritium (D-T) burns sometime next decade. “What we found matches predictions,” says Fernanda Rimini, JET’s plasma operations expert.
But that achievement could be a Pyrrhic victory, fusion scientists are realizing. ITER is expected to consume most of the world’s tritium, leaving little for reactors that come after.
Fusion advocates often boast that the fuel for their reactors will be cheap and plentiful. That is certainly true for deuterium: Roughly one in every 5000 hydrogen atoms in the oceans is deuterium, and it sells for about $13 per gram. But tritium, with a half-life of 12.3 years, exists naturally only in trace amounts in the upper atmosphere, the product of cosmic ray bombardment. Nuclear reactors also produce tiny amounts, but few harvest it.
To read more, click on Science